针对图像的操作 cv2, matplotlib.pylab, PIL.Image
一般用PIL.Image或者cv2来打开或者保存,用matplotlib.pylab来显示
在pytorch中也可以用tv.utils.save_image()专门来保存图片。
cv2
参考链接
注意:pylab.imread和PIL.Image.open读入的都是RBG顺序,而cv2.imread读入的是BGR顺序,混合使用的时候要特别注意1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35# 读取图片
import cv2
import numpy as np
img = cv2.imread('examples.png') # # 默认是读入为彩色图,即使原图是灰度图也会复制成三个相同的通道变成彩色图
img_gray = cv2.imread('examples.png',0) # 第二个参数为0的时候读入为灰度图,即使原图是彩色图也会转成灰度图
print(type(img), img.dtype, np.min(img), np.max(img))
print(img.shape)
print(img_gray.shape)
(<type 'numpy.ndarray'>, dtype('uint8'), 0, 255) # opencv读进来的是numpy数组,类型是uint8,0-255
(824, 987, 3) # 彩色图3通道
(824, 987) # 灰度图单通道
## 显示
import pylab as plt
import cv2
import numpy as np
img = cv2.imread('examples.png')
plt.imshow(img[..., -1::-1]) # 因为opencv读取进来的是bgr顺序呢的,而imshow需要的是rgb顺序,因此需要先反过来 plt.show()
## 灰度与RGB转化
import cv2
import pylab as plt
img = cv2.imread('examples.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # BGR转灰度
img_bgr = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2BGR) # 灰度转BRG
img_rgb = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2RGB) # 也可以灰度转RGB
## 保存图片
import cv2 img = cv2.imread('examples.png') # 这是BGR图片
cv2.imwrite('examples2.png', img) # 这里也应该用BGR图片保存,这里要非常注意,因为用pylab或PIL读入的图片都是RGB的,如果要用opencv存图片就必须做一个转换
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imwrite('examples_gray.png', img_gray)
matplotlib.pylab
1 | # 读取图片 |
PIL.Image
1 | # 读取图片 |