计算机组成原理
Sharelatex
ssr
发表于
ssr
computer_systems
grep
Linux
docker
object detection
目标检测:
https://blog.csdn.net/electech6/article/details/95240278
RPN:
https://blog.csdn.net/shiheyingzhe/article/details/83713352
YOLO
https://blog.csdn.net/shuiyixin/article/details/82533849
https://luckmoonlight.github.io/2018/11/28/yoloV1yolov2yoloV3/
YOLO v2
https://blog.csdn.net/weixin_40092412/article/details/91547836
refinet
https://blog.csdn.net/zhangjunhit/article/details/72844862
https://github.com/DrSleep/refinenet-pytorch/blob/master/models/resnet.py
person re-id with memory
发表于
分类于
person re-id
1. 前言
CVPR2019 看到好几篇都使用了 memory 的结构来进行 person re-id,所以对这几篇论文总结一下。具体的论文分析在我之前的博客已经有,这里主要介绍这几篇论文对 memory 的使用方法和效果。
- OIM: CVPR2017_Joint Detection and Identification Feature Learning for Person Search
- DIMN: CVPR2019_Generalizable Person Re-identification by Domain-Invariant Mapping Network
- MAR: CVPR2019 Unsupervised Person Re-identification by Soft Multilabel Learning
- ECN: CVPR2019_Invariance Matters Exemplar Memory for Domain Adaptive Person Re-identification
OIM
1. Introduction
- paper: CVPR2017_Joint Detection and Identification Feature Learning for Person Search
- code: caffe, [pytorch][https://github.com/Cysu/open-reid]
- project: End-to-End Deep Learning for Person Search
- memory: OIM, DIMN, MAR, ECN